Actively Estimating Crowd Annotation Consensus

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actively Estimating Crowd Annotation Consensus

The rapid growth of storage capacity and processing power has caused machine learning applications to increasingly rely on using immense amounts of labeled data. It has become more important than ever to have fast and inexpensive ways to annotate vast amounts of data. With the emergence of crowdsourcing services, the research direction has gravitated toward putting the wisdom of crowds to bette...

متن کامل

On Actively Teaching the Crowd to Classify

Is it possible to teach workers while crowdsourcing classification tasks? Amongst the challenges: (a) workers have different (unknown) skills, competence, and learning rate to which the teaching must be adapted, (b) feedback on the workers’ progress is limited, (c) we may not have informative features for our data (otherwise crowdsourcing may be unnecessary). We propose a natural Bayesian model...

متن کامل

A framework to monitor, model, and actively manage crowd behaviour

In this poster we outline our framework for the analysis of crowds in different settings (city centres, sports events, etc.) and situations (regular or extreme). The framework has a monitor, a model and an intervene component to evaluate a number of strategies for risk and damage mitigation measures. This is illustrated with an example of a crowd at a football stadium.

متن کامل

Temporal Information Annotation: Crowd vs. Experts

This paper describes two sets of crowdsourcing experiments on temporal information annotation conducted on two languages, i.e., English and Italian. The first experiment, launched on the CrowdFlower platform, was aimed at classifying temporal relations given target entities. The second one, relying on the CrowdTruth metric, consisted in two subtasks: one devoted to the recognition of events and...

متن کامل

Effective Crowd Annotation for Relation Extraction

Can crowdsourced annotation of training data boost performance for relation extraction over methods based solely on distant supervision? While crowdsourcing has been shown effective for many NLP tasks, previous researchers found only minimal improvement when applying the method to relation extraction. This paper demonstrates that a much larger boost is possible, e.g., raising F1 from 0.40 to 0....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Artificial Intelligence Research

سال: 2018

ISSN: 1076-9757

DOI: 10.1613/jair.5727